• FSD7616-C INTEGRATED CURRENT SENSORS
Integrated current sensor

FSD7616-C INTEGRATED CURRENT SENSORS

The FSD7616-C series on-chip current sensor is based on the principle of electromagnetic induction, using the tunnel reluctance (TMR) design with high sensitivity and high signal-to-noise ratio, and its internal conditioning circuit can accurately measure current signals in the form of DC, AC and pulse under the condition of electrical isolation of the primary secondary side.

Description

Advantages

Parameters

Selection

Download

Functional block diagram

Figure 1 FSD7616-C functional block diagram

Typical output characteristic curve


Power-on startup time waveform


Frequency response characteristic curve

The following curves are tested according to FSD7616-050C5BFB as an example:


Parameter definition and calculation formula

Encapsulation


Pin definition and wiring diagram


Serial number

Pin name

Feature

1

IP+

 Current flowing in, positive direction

2



3



4



5

IP-

 Current flowing out, negative direction

6



7



8



9

NC

No internal electrical connection, suspended by default

10

VCC

Power supply

11

NC

No internal electrical connection, suspended by default

12

VOUT

Analog voltage output

13

VREF

Reference voltage

14

NC

No internal electrical connection, suspended by default

15

GND

electrically

16

NC

No internal electrical connection, suspended by default

PCB recommended layout


The relationship between junction temperature and primary current of FSD7616-C series chips is measured with the following experimental DEMO board.


PCB DEMO board information

Number of floors

2 floors

Original side path copper-covered single-layer area

910 mm2

Single layer copper coating thickness

4Oz


The temperature rise of the FSD7616-C junction is mainly due to the spontaneous heat of the current flowing through the path of the primary conductor, and the heat is conducted through the plastic sealing body, lead frame, PCB and air. At normal temperature, the relationship between the continuous loading current (RMS) of FSD7616-C and the incremental junction temperature rise is shown in Figure 18. In the environment of natural air flow at normal temperature, the junction temperature of FSD7616-C generally tends to be stable when the continuous current is loaded for about 10min. As shown in Figure 19, when the DC current is continuously loaded for 50A at 25°C, the relationship curve between junction temperature rise and the loading current time is about 100s. Chip junction temperature is close to 100°C.

The relationship curve between the maximum continuous current loading capability (RMS) of FSD7616-C and the operating ambient temperature is shown in Figure 20. When the ambient temperature is 25°C, the maximum continuous current effective value is 56A. At 125 degrees, it about 30A. If the junction temperature does not exceed 165°C, the surge or pulse current is allowed to exceed the maximum value listed in the diagram. The use of appropriate Layout, such as increasing the thickness, area and PCB layer of copper, can have a better heat dissipation effect.


Instructions 

1)  Incorrect cables may damage the sensor.

2)The product power supply voltage VCC must meet specifications. If the voltage is too low, the product cannot be accurately output. If the voltage is too high, the product may be damaged.

3) The RC filtering link between product output VOUT and GND can be added according to actual requirements to adjust product output frequency characteristics.

4)Sensors can be customized according to customer requirements, including supply voltage, measurement current range, pin definition, and more.


Product characteristics  

• 16-pin SOPW package

• High precision

• Low noise

• Wide frequency band, fast response

• Excellent temperature stability

• RoHS & REACH/RoHS & REACH compliant


Typical application

• Inverter current detection

• Power monitoring

• Motor drive

• Photovoltaic inverter

• Overcurrent protection


Absolute maximum rating


Parameter

Symbol

Minimum value

Maximum value

Unit

Supply voltage

VCC

-

6

V

ESD Performance (HBM)

VESD

-

4

kV

Operating temperature

TA

-40

125

°C

Storage temperature

TSTG

-40

125

°C

Maximum junction temperature

TJ(MAX)

-

165

°C

 

Isolation characteristic

 

Parameter

Symbol

Rated value

Unit

Compressive strength of insulation

VD

4.8

kV(50Hz, 1min)

Maximum operating isolation voltage

 VISO

1550

VPK



1097

VRMS

Creepage distance

dCP

8.2

mm

Electrical clearance

dCL

8.2

mm

Relative leakage marking index

CTI

600

V

 

Electrical parameter

 

Parameter

 Symbol

Conditions

Minimum value

Typical value

Maximum value

Unit

Supply voltage

 VCC

FSD7616-XXXC3BFB

3

3.3

3.6

 V



FSD7616-XXXC5BFB

4.5

5

5.5


Zero bias voltage

 VOFF

IP  = 0, VCC  = 3.3 V,

FSD7616-XXXC3BFB

-

1.65

-

V



IP  = 0, VCC  = 5 V,

FSD7616-XXXC5BFB

-

2.5

-


 

Output saturation voltage

VOL

-

0.2

-

-

 V


VOH

-

-

-

VCC - 0.2


Current consumption

IC

VCC  = 3.3 V

-

-

6

mA



VCC  = 5 V

-

-

6


Power-on time

tON

Stable level from VCC ≥ 2.5V to VOUT

-

200

-

μs

Primary side conductor resistance

RIN

TA = 25°C

-

0.95

-

Output resistance load

RL

Between VOUT and GND

1

10

-

Output capacitance load

CL

Between VOUT and GND

-

-

10

nF

Output pull current

IOUT(SOURCE)

VCC = 3.3V, VOUT shorted to GND

-

43

-

 

mA



VCC = 5 V, VOUT shorted to GND

-

45

-

Output filling current

IOUT(SINK)

VCC = 3.3V, VOUT shorted to VCC

-

43

-

 

mA



VCC = 5 V, VOUT shorted to VCC

-

45

-

VREF resistance load

RLREF

Between VREF and GND

10

100

-

VREF capacitive load

CLREF

Between VREF and GND

-

1

10

nF

 VREF pull current

 IREF(SOURCE)

VCC = 3.3V, VREF short-circuited to GND

-

3.7

-

 

mA



VCC = 5 V, VREF short-circuited to GND

-

8.7

-



VREF perfusion current

 

IREF(SINK)

VCC = 3.3V, VREF short circuit to VCC

-

0.125

-

 

mA



VCC = 5 V, VREF short circuit to VCC

-

0.135

-


Power supply rejection ratio

PSRR

DC~1kHz, 100mV pk-pk ripple aroud VCC  = 5 V, IP  = 0

 -

-40

 -

dB

Common-mode magnetic field rejection ratio

CMFRR

Uniform external magnetic field

-

-40

-

dB

Rise time

trise

TA = 25 °C, lP  = IPM(max)

-

0.5

-

μs

Delay time

tD

TA = 25 °C, lP  = IPM(max)

-

0.4

-

μs

Response time

tR

TA = 25 °C, lP  = IPM(max)

-

0.8

-

μs

bandwidth

BW

IP = 10A, amplitude attenuation to -3dB

-

600

-

kHz

 

FSD7616-XXXC3BFBPerformance parameter

TA = 25 °C, VCC = 3.3V, RL = 10 kΩ unless otherwise specified

 

 Parameter

 Symbol

Conditions

Minimum value

Typical value

Maximum value

Unit

Measuring current range

 IPM

FSD7616-020C3BFB

-20

-

20

 A



FSD7616-030C3BFB

-30

-

30




FSD7616-040C3BFB

-40

-

40




FSD7616-050C3BFB

-50

-

50




FSD7616-065C3BFB

-65

-

65


sensitivity

S

FSD7616-020C3BFB

-

66

-

 mV/A



FSD7616-030C3BFB

-

44

-




FSD7616-040C3BFB

-

33

-




FSD7616-050C3BFB

-

26.4

-




FSD7616-065C3BFB

-

20.31

-


 Basic error

 XG

TA = 25 °C, IP  = IPM(min)  ~ IPM(max)

-

±1

-

%IPM(max)



TA = -40 °C ~ +125 °C, IP = IPM(min)  ~ IPM(max)

-3

-

3


Linearity error

εL

IP  = IPM(min)  ~ IPM(max)

-

0.5

1

%IPM(max)

 Sensitivity error

 εS

TA = 25 °C, IP  = IPM(min)  ~ IPM(max)

-1

-

1

 %



TA = -40 °C ~ +25 °C, IP  = IPM(min)  ~ IPM(max)

-1.5

-

1.5




TA = 25 °C ~ +125 °C, IP = IPM(min)  ~ IPM(max)

-2

-

2


Reference voltage

 VREF

TA = 25 °C

1.645

-

1.655

V



TA = -40 °C ~ +125 °C

1.635

-

1.665


 Zero offset voltage

 VOE

TA = 25 °C, IP  = 0, VOUT - VREF

-10

-

10

mV



TA = -40 °C ~ +25 °C, IP  = 0, VOUT - VREF

-25

-

25




TA = 25 °C ~ +125 °C, IP  = 0, VOUT - VREF

-25

-

25


hysteresis

VOH

IP  = IPM(min)  or IPM(max)  → 0

-

±10

-

mV

noise

VN

TA = 25 °C, BW = 100 kHz

-

10

-

mVPP

  

FSD7616-XXXC5BFB Performance parameter

TA = 25 °C, VCC = 5 V, RL = 10 kΩ unless otherwise specified

 

Parameter

Symbol

Conditions

Minimum value

Typical value

Maximum value

Unit

Measuring current range

 IPM

FSD7616-020C5BFB

-20

-

20

 A



FSD7616-030C5BFB

-30

-

30




FSD7616-040C5BFB

-40

-

40




FSD7616-050C5BFB

-50

-

50




FSD7616-065C5BFB

-65

-

65


sensitivity

S

FSD7616-020C5BFB

-

100

-

mV/A



FSD7616-030C5BFB

-

66.67

-




FSD7616-040C5BFB

-

50

-




FSD7616-050C5BFB

-

40

-




FSD7616-065C5BFB

-

30.77

-


Basic error

XG

TA = 25 °C, IP  = IPM(min)  ~ IPM(max)

-

±1

-

%IPM(max)



TA = -40 °C ~ +125 °C, IP = IPM(min)  ~ IPM(max)

-3

-

3


Linearity error

εL

IP  = IPM(min)  ~ IPM(max)

-

0.5

1

%IPM(max)

Sensitivity error

 εS

TA = 25 °C, IP  = IPM(min)  ~ IPM(max)

-1

-

1

 %



TA = -40 °C ~ +25 °C, IP  = IPM(min)  ~ IPM(max)

-1.5

-

1.5




TA = 25 °C ~ +125 °C, IP  = IPM(min)  ~ IPM(max)

-2

-

2


Reference voltage

VREF

TA = 25 °C

2.495

-

2.505

 V



TA = -40 °C ~ +125 °C

2.48

-

2.52


 

Zero offset voltage

 

VOE

TA = 25 °C, IP  = 0, VOUT - VREF

-10

-

10

 

mV



TA = -40 °C ~ +25 °C, IP  = 0, VOUT - VREF

-30

-

30




TA = 25 °C ~ +125 °C, IP  = 0, VOUT - VREF

-30

-

30


hysteresis

VOH

IP  = IPM(min)  or IPM(max)  → 0

-

±10

-

mV

noise

VN

TA = 25 °C, BW = 100 kHz

-

10

-

mVPP

 

 

 

 

 

 


Type

Supply voltage

Measuring  range

Zero bias voltage

sensitivity

FSD7616-020C3BFB

3.3 V

±20 A

1.65 V

66 mV/A

FSD7616-030C3BFB

3.3 V

±30 A

1.65 V

44 mV/A

FSD7616-040C3BFB

3.3 V

±40 A

1.65 V

33 mV/A

FSD7616-050C3BFB

3.3 V

±50 A

1.65 V

26.4 mV/A

FSD7616-065C3BFB

3.3 V

±65 A

1.65 V

20.31 mV/A

FSD7616-020C5BFB

5 V

±20 A

2.5 V

100 mV/A

FSD7616-030C5BFB

5 V

±30 A

2.5 V

66.67 mV/A

FSD7616-040C5BFB

5 V

±40 A

2.5 V

50 mV/A

FSD7616-050C5BFB

5 V

±50 A

2.5 V

40 mV/A

FSD7616-065C5BFB

5 V

±65 A

2.5 V

30.77 mV/A


Classify Title Download

Need Any Help

Leave your contacts and our engineers will help you to find the solution you are looking for.

Contact us for further information

The content with * is required

Related Products

0

Let’s talk! We’ll provide the perfect solution for you!

Shanghai Freesor Sensor Technology Co. ,Ltd. was founded in 2005 by a number of overseas returnees with rich experience. It is a high-tech enterprise integrating design, research and development, production and sales.

Copyright © 2024 Shanghai Freesor Sensor Technology Co. ,Ltd.           Privacy Policy Powered by Bontop