• FSD7610-C Intergrated current sensor
Integrated current sensor

FSD7610-C Intergrated current sensor

The FSD7610-C series on-chip current sensor is based on the principle of electromagnetic induction, using the tunnel reluctance (FSD) design with high sensitivity and high signal-to-noise ratio, and its internal temperature drift compensation circuit, under the condition of electrical isolation of the primary secondary side, it can accurately measure current signals in the form of DC, AC and pulse.

Description

Advantages

Parameters

Selection

Download

Functional block diagram


Typical output characteristic curve




Power-on startup time waveform




Frequency response characteristic curve

The following curves are tested according to FSD7616-050C5BFB as an example:



Parameter definition and calculation formula

Encapsulation


Pin definition and wiring diagram


Serial numberPin nameFeature
1IP+Current flowing in, positive direction
2IP-Current flowing out, negative direction
3NCNo internal electrical connection, suspended by default
4VCCPower supply
5NCNo internal electrical connection, suspended by default
6VOUTAnalog voltage output
7VREFReference voltage
8NCNo internal electrical connection, suspended by default
9GNDelectrically
10NCInternal no electrical connection, default suspension Internal no electrical connection, default suspension


Recommended layout

Chip junction temperature and primary current

The relationship between junction temperature and primary current of FSD7610-C series chips is measured with the following experimental DEMO board.




PCB DEMO board information
Number of floors2 layer
Original side path copper-covered single-layer area450 mm2
Single layer copper coating thickness4Oz



Figure 17 PCB DEMO reference layout diagram



The temperature rise of the FSD7610-C junction is mainly due to the spontaneous heat of the current flowing through the path of the primary conductor, and the heat is conducted through the plastic sealing body, lead frame, PCB and air. At normal temperature, the relationship curve between continuous loading current (RMS) of FSD7610-C and junction temperature rise increment is shown in Figure 18. In the environment of natural air flow at normal temperature, the junction temperature of FSD7610-C generally tends to be stable when the continuous current is loaded for about 10min. As shown in Figure 19, when the DC current is continuously loaded for 100A at 26°C, the relationship between the junction temperature rise and the loading current time is about 350s. The chip junction temperature is close to 165°C.

The relationship curve between the maximum continuous current loading capability (current RMS) of FSD7610-C and operating ambient temperature is shown in Figure 20. When the ambient temperature is 25°C, the maximum continuous current RMS is 96A. At 125 degrees, that's about 54A. If the junction temperature does not exceed 165°C, the surge or pulse current is allowed to exceed the maximum value listed in the diagram.


Instructions 

1)Incorrect cables may damage the sensor.

2) The product power supply voltage VCC must meet specifications. If the voltage is too low, the product cannot be accurately output. If the voltage is too high, the product may be damaged.

3) The RC filtering link between product output VOUT and GND can be added according to actual requirements to adjust product output frequency characteristics.

4) Sensors can be customized according to customer requirements, including supply voltage, measurement current range, pin definition, and more.


Product characteristics    

• 10-pin SOPW package

• High precision

• Low noise

• Wide frequency band, fast response

• Excellent temperature stability

• RoHS & REACH compliant


Typical application

• Inverter current detection

• Power monitoring

• Motor drive

• Photovoltaic inverter

• Overcurrent protection


Absolute maximum rating

Parameter

Symbol

Minimum value

Maximum value

Unit

Supply voltage

VCC

-

6

V

ESD Performance (HBM)

VESD

-

4

kV

Service temperature

TA

-40

125

°C

Storage temperature

TSTG

-40

125

°C

Maximum junction temperature

TJ(MAX)

-

165

°C


Insulation isolation characteristic

Parameter

Symbol

Rated value

Unit

Compressive strength of insulation

VD

4.8

kV(50Hz, 1min)

Maximum operating isolation voltage

VISO

1618

VPK



1144

VRMS

Creepage distance

dCP

8.2

mm

Electrical clearance

dCL

8.2

mm

Relative leakage marking index

CTI

≥ 600

V

 

Electrical parameter

Parameter

 Symbol

Conditions

Minimum value

Typical value

Maximum value

 unit

Supply voltage

 VCC

FSD7610-XXXC3BFB

3

3.3

3.6

 V



FSD7610-XXXC5BFB

4.5

5

5.5


Zero bias voltage

 VOFF

IP  = 0, VCC  = 3.3 V,FSD7610-XXXC3BFB

-

1.65

-

V



IP  = 0, VCC  = 5 V,FSD7610-XXXC5BFB

-

2.5

-


Output saturation voltage

VOL

-

0.2

-

-

V


VOH

-

-

-

VCC - 0.2


Current consumption

IC

VCC  = 3.3 V

-

-

6

mA



VCC  = 5 V

-

-

6


Power-on time

tON

Stable level from VCC ≥ 2.5V to VOUT

-

200

-

μs

Primary side conductor resistance

RIN

TA = 25°C

-

0.27

-

Output resistance load

RL

Between VOUT and GND

1

10

-

Output capacitance load

CL

Between VOUT and GND

-

-

10

nF

Output pull current

IOUT(SOURCE)

VCC = 3.3V, VOUT shorted to GND

-

43

-

mA



VCC = 5 V, VOUT shorted to GND

-

45

-


Output filling current

IOUT(SINK)

VCC = 3.3V, VOUT shorted to VCC

-

43

-

mA



VCC = 5 V, VOUT shorted to VCC

-

45

-


VREF resistance load

RLREF

Between VREF and GND

10

100

-

VREF capacitive load

CLREF

Between VREF and GND

-

1

10

nF

VREF pull current

IREF(SOURCE)

VCC = 3.3V, VREF short-circuited to GND

-

3.7

-

 mA



VCC = 5 V, VREF short-circuited to GND

-

8.7

-


 VREF perfusion current

IREF(SINK)

VCC = 3.3V, VREF short circuit to VCC

-

0.125

-

 mA



VCC = 5 V, VREF short circuit to VCC

-

0.135

-


Power supply rejection ratio

PSRR

DC~1kHz, 100mV pk-pk ripple aroud VCC  = 5 V, IP  = 0

-

-40

-

dB

Common-mode magnetic field rejection ratio

CMFRR

Uniform external magnetic field

-

-40

-

dB

Rise time

trise

 10% to 90% of the time from the final VOUT

-

1.1

-

μs

Delay time

tD

20% time from the final IP to the corresponding VOUT

-

0.4

-

μs

Response time

tR

90% of the time from the final IP to the corresponding VOUT

-

1.2

-

μs

bandwidth

BW

IP = 10A, amplitude attenuation to -3dB

-

350

-

kHz

 

FSD7610-XXXC3BFB Performance parameter

TA = 25 °C, VCC = 3.3V, RL = 10 kΩ unless otherwise specified

 

Parameter

Symbol

Conditions

Minimum value

Typical value

Maximum value

Unit

Measuring  range

IPM

FSD7610-050C3BFB

-50

-

50

 A



FSD7610-075C3BFB

-75

-

75




FSD7610-100C3BFB

-100

-

100




FSD7610-150C3BFB

-150

-

150




FSD7610-200C3BFB

-200

-

200


Sensitivity

S

FSD7610-050C3BFB

-

26.4

-

 mV/A



FSD7610-075C3BFB

-

17.6

-




FSD7610-100C3BFB

-

13.2

-




FSD7610-150C3BFB

-

8.8

-




FSD7610-200C3BFB

-

6.6

-


 Basic error

 XG

TA = 25 °C, IP  = IPM(min)  ~ IPM(max)

-

±1

-

 %IPM(max)



TA = -40 °C ~ +25 °C, IP  = IPM(min)  ~ IPM(max)

-2

-

2




TA = 25 °C ~ +125 °C, IP  = IPM(min)  ~ IPM(max)

-3

-

3


Linearity error

εL

IP  = IPM(min)  ~ IPM(max)

-

0.5

1

%IPM(max)

Sensitivity error

εS

TA = 25 °C, IP  = IPM(min)  ~ IPM(max)

-1

-

1

 %



TA = -40 °C ~ +25 °C, IP  = IPM(min)  ~ IPM(max)

-1.5

-

1.5




TA = 25 °C ~ +125 °C, IP  = IPM(min)  ~ IPM(max)

-2

-

2


Reference voltage

 VREF

TA = 25 °C

1.645

-

1.655

 V



TA = -40 °C ~ +125 °C

1.635

-

1.665


 Zero offset voltage

 VOE

TA = 25 °C, IP  = 0, VOUT - VREF

-10

-

10

 mV



TA = -40 °C ~ +25 °C, IP  = 0, VOUT - VREF

-12

-

12




TA = 25 °C ~ +125 °C, IP  = 0, VOUT - VREF

-20

-

20


hysteresis

VOH

IP  = IPM(min)  or IPM(max)  → 0

-10

-

10

mV

noise

VN

TA = 25 °C, BW = 100 kHz

-

10

-

mVPP

 

FSD7610-XXXC5BFB

TA = 25 °C, VCC = 5 V, RL = 10 kΩ unless otherwise specified


Parameter

 Symbol

 Conditions

Minimum value

Minimum value

Minimum value

Unit

Measuring range

 IPM

FSD7610-050C5BFB

-50

-

50

A



FSD7610-075C5BFB

-75

-

75




FSD7610-100C5BFB

-100

-

100




FSD7610-150C5BFB

-150

-

150




FSD7610-200C5BFB

-200

-

200


Sensitivity

 S

FSD7610-050C5BFB

-

40

-

mV/A



FSD7610-075C5BFB

-

26.67

-




FSD7610-100C5BFB

-

20

-




FSD7610-150C5BFB

-

13.33

-




FSD7610-200C5BFB

-

10

-


Basic error

XG

TA = 25 °C, IP  = IPM(min)  ~ IPM(max)

-

±1

-

%IPM(max)



TA = -40 °C ~ +25 °C, IP  = IPM(min)  ~ IPM(max)

-2

-

2




TA = 25 °C ~ +125 °C, IP  = IPM(min)  ~ IPM(max)

-3

-

3


Linearity error

εL

IP  = IPM(min)  ~ IPM(max)

-

0.5

1

%IPM(max)

Sensitivity error

εS

TA = 25 °C, IP  = IPM(min)  ~ IPM(max)

-1

-

1

 %



TA = -40 °C ~ +25 °C, IP  = IPM(min)  ~ IPM(max)

-1.5

-

1.5




TA = 25 °C ~ +125 °C, IP  = IPM(min)  ~ IPM(max)

-2

-

2


Reference voltage

VREF

TA = 25 °C

2.495

-

2.505

V



TA = -40 °C ~ +125 °C

2.48

-

2.52


Zero offset voltage

VOE

TA = 25 °C, IP  = 0, VOUT - VREF

-10

-

10

mV



TA = -40 °C ~ +25 °C, IP  = 0, VOUT - VREF

-15

-

15




TA = 25 °C ~ +125 °C, IP  = 0, VOUT - VREF

-20

-

20


hysteresis

VOH

IP  = IPM(min)  or IPM(max)  → 0

-10

-

10

mV

 noise

VN

TA = 25 °C, BW = 100 kHz

-

10

-

mVPP


Type

Supply voltage

Measuring  range

Zero bias voltage

sensitivity

FSD7610-050C3BFB

3.3 V

±50 A

1.65 V

26.4mV/A

FSD7610-075C3BFB

3.3 V

±75 A

1.65 V

17.6mV/A

FSD7610-100C3BFB

3.3 V

±100A

1.65 V

13.2 mV/A

FSD7610-150C3BFB

3.3 V

±150 A

1.65 V

8.8mV/A

FSD7610-200C3BFB

3.3 V

±200A

1.65 V

6.6mV/A

FSD7610-050C5BFB

5 V

±50 A

2.5 V

40 mV/A

FSD7610-075C5BFB

5 V

±75 A

2.5 V

26.67 mV/A

FSD7610-100C5BFB

5 V

±100 A

2.5 V

20 mV/A

FSD7610-150C5BFB

5 V

±150A

2.5 V

13.33 mV/A

FSD7610-200C5BFB

5 V

±200A

2.5 V

10 mV/A


Classify Title Download

Need Any Help

Leave your contacts and our engineers will help you to find the solution you are looking for.

Contact us for further information

The content with * is required

Related Products

0

Let’s talk! We’ll provide the perfect solution for you!

Shanghai Freesor Sensor Technology Co. ,Ltd. was founded in 2005 by a number of overseas returnees with rich experience. It is a high-tech enterprise integrating design, research and development, production and sales.

Copyright © 2024 Shanghai Freesor Sensor Technology Co. ,Ltd.           Privacy Policy Powered by Bontop